How To Filter Multiple Values In R
Subset Data Frame Rows in R
This tutorial describes how to subset or extract data frame rows based on certain criteria.
In this tutorial, you will learn the post-obit R functions from the dplyr parcel:
- slice(): Extract rows by position
- filter(): Extract rows that see a certain logical criteria. For example
iris %>% filter(Sepal.Length > six)
. - filter_all(), filter_if() and filter_at(): filter rows inside a choice of variables. These functions replicate the logical criteria over all variables or a selection of variables.
- sample_n(): Randomly select n rows
- sample_frac(): Randomly select a fraction of rows
- top_n(): Select top n rows ordered by a variable
We will also bear witness you lot how to remove rows with missing values in a given cavalcade.
Contents:
- Required packages
- Demo dataset
- Extract rows past position
- Filter rows by logical criteria
- Logical comparisons
- Extract rows based on logical criteria
- Filter rows within a selection of variables
- Remove missing values
- Select random rows from a data frame
- Select peak north rows ordered by a variable
- Summary
Required packages
Load the tidyverse
packages, which include dplyr
:
library(tidyverse)
Demo dataset
We'll employ the R congenital-in iris information fix, which we start past converting into a tibble data frame (tbl_df) for easier data analysis.
my_data <- as_tibble(iris) my_data
## # A tibble: 150 x 5 ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## <dbl> <dbl> <dbl> <dbl> <fct> ## i v.1 three.v i.4 0.2 setosa ## 2 4.9 3 1.4 0.2 setosa ## iii 4.7 3.2 ane.3 0.two setosa ## iv iv.vi 3.one one.5 0.two setosa ## five 5 3.6 1.4 0.two setosa ## 6 5.iv 3.9 1.7 0.iv setosa ## # ... with 144 more rows
Filter rows past logical criteria
- Key R function:
filter()
[dplyr package]. Used to filter rows that meet some logical criteria.
Before standing, we innovate logical comparisons and operators, which are important to know for filtering data.
Logical comparisons
The "logical" comparison operators bachelor in R are:
- Logical comparisons
- <: for less than
- >: for greater than
- <=: for less than or equal to
- >=: for greater than or equal to
- ==: for equal to each other
- !=: not equal to each other
- %in%: group membership. For example, "value %in% c(2, three)" means that value tin takes two or 3.
- is.na(): is NA
- !is.na(): is not NA.
- Logical operators
- value == 2|three: means that the value equal ii or (|) 3. value %in% c(two, 3) is a shortcut equivalent to value == 2|3.
- &: ways and. For case sex == "female person" & age > 25
The nigh frequent error fabricated past beginners in R is to apply = instead of == when testing for equality. Call back that, when yous are testing for equality, you should always use == (not =).
Filter rows inside a selection of variables
This section presents three functions - filter_all(), filter_if() and filter_at() - to filter rows within a selection of variables.
These functions replicate the logical criteria over all variables or a selection of variables.
Create a new demo data prepare from my_data
by removing the group column "Species":
my_data2 <- my_data %>% select(-Species)
- Select rows where all variables are greater than 2.four:
my_data2 %>% filter_all(all_vars(.> ii.4))
## # A tibble: 3 10 4 ## Sepal.Length Sepal.Width Petal.Length Petal.Width ## <dbl> <dbl> <dbl> <dbl> ## 1 half-dozen.three three.3 6 2.5 ## 2 vii.2 3.vi 6.1 2.5 ## three vi.seven three.3 5.seven ii.5
- Select rows when whatsoever of the variables are greater than 2.4:
my_data2 %>% filter_all(any_vars(.> 2.4))
## # A tibble: 150 x 4 ## Sepal.Length Sepal.Width Petal.Length Petal.Width ## <dbl> <dbl> <dbl> <dbl> ## 1 5.1 three.5 ane.four 0.ii ## 2 iv.ix iii ane.four 0.2 ## three four.7 three.2 one.3 0.2 ## 4 4.6 3.ane i.5 0.2 ## five five 3.6 i.4 0.2 ## 6 five.4 3.9 1.7 0.iv ## # ... with 144 more than rows
- Vary the pick of columns on which to apply the filtering criteria.
filter_at()
takes avars()
specification. The post-obit R code apply the filtering criteria on the columns Sepal.Length and Sepal.Width:
my_data2 %>% filter_at(vars(starts_with("Sepal")), any_vars(. > 2.four))
## # A tibble: 150 ten iv ## Sepal.Length Sepal.Width Petal.Length Petal.Width ## <dbl> <dbl> <dbl> <dbl> ## ane 5.1 3.5 1.four 0.2 ## two four.ix 3 1.iv 0.2 ## 3 4.7 3.2 ane.3 0.2 ## 4 four.vi three.ane i.5 0.2 ## 5 v three.half-dozen 1.4 0.2 ## 6 5.4 3.9 1.7 0.4 ## # ... with 144 more than rows
Remove missing values
Nosotros start by creating a data frame with missing values. In R NA (Non Bachelor) is used to represent missing values:
# Create a data frame with missing information friends_data <- data_frame( name = c("A", "B", "C", "D"), age = c(27, 25, 29, 26), height = c(180, NA, NA, 169), married = c("yes", "yes", "no", "no") ) # Print friends_data
## # A tibble: four ten 4 ## proper noun historic period height married ## <chr> <dbl> <dbl> <chr> ## one A 27 180 yep ## two B 25 NA yes ## iii C 29 NA no ## 4 D 26 169 no
Extract rows where elevation is NA:
friends_data %>% filter(is.na(height))
## # A tibble: 2 x iv ## proper name age height married ## <chr> <dbl> <dbl> <chr> ## 1 B 25 NA yep ## 2 C 29 NA no
Exclude (drib) rows where height is NA:
friends_data %>% filter(!is.na(height))
## # A tibble: 2 x four ## proper name age tiptop married ## <chr> <dbl> <dbl> <chr> ## 1 A 27 180 yes ## 2 D 26 169 no
In the R code above, !is.na() means that "nosotros don't desire" NAs.
Select random rows from a data frame
It'due south possible to select either n random rows with the function sample_n()
or a random fraction of rows with sample_frac()
. We get-go use the function gear up.seed()
to initiate random number generator engine. This of import for users to reproduce the assay.
set.seed(1234) # Extract 5 random rows without replacement my_data %>% sample_n(5, replace = FALSE) # Extract 5% of rows, randomly without replacement my_data %>% sample_frac(0.05, replace = Fake)
Select top north rows ordered by a variable
Select the top 5 rows ordered by Sepal.Length
my_data %>% top_n(5, Sepal.Length)
## # A tibble: 5 10 five ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## <dbl> <dbl> <dbl> <dbl> <fct> ## 1 7.seven 3.viii 6.7 2.two virginica ## 2 7.7 two.6 six.9 ii.3 virginica ## iii 7.vii ii.8 6.7 two virginica ## 4 seven.9 3.8 six.4 2 virginica ## 5 7.7 iii 6.i 2.iii virginica
Group by the column Species and select the top 5 of each group ordered by Sepal.Length:
my_data %>% group_by(Species) %>% top_n(5, Sepal.Length)
## # A tibble: 16 x v ## # Groups: Species [3] ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## <dbl> <dbl> <dbl> <dbl> <fct> ## 1 five.8 4 1.2 0.ii setosa ## 2 5.7 4.4 1.five 0.4 setosa ## 3 5.vii three.8 1.seven 0.3 setosa ## four 5.five 4.2 1.iv 0.two setosa ## v v.5 3.5 1.iii 0.2 setosa ## 6 7 three.2 4.7 1.4 versicolor ## # ... with x more rows
Summary
In this tutorial, nosotros introduce how to filter a data frame rows using the dplyr packet:
- Filter rows by logical criteria:
my_data %>% filter(Sepal.Length >seven)
- Select due north random rows:
my_data %>% sample_n(10)
- Select a random fraction of rows:
my_data %>% sample_frac(10)
- Select tiptop n rows by values:
my_data %>% top_n(ten, Sepal.Length)
Recommended for you
This section contains best data science and cocky-development resources to assist you lot on your path.
How To Filter Multiple Values In R,
Source: https://www.datanovia.com/en/lessons/subset-data-frame-rows-in-r/
Posted by: karlsonopli1944.blogspot.com
0 Response to "How To Filter Multiple Values In R"
Post a Comment